

Collaboratory for Multi-scale Chemical Science

http://cmcs.ca.sandia.gov/

Pacific Northwest National Laboratory U.S. Department of Energy

Motivation & Vision

- Chemical Science is multi-scale and multi-disciplined and must be enabled by greater collaboration and information sharing.
- The Collaboratory for Multi-scale Chemical Science (CMCS) is an informatics infrastructure enabling collaborative synthesis of multi-scale information to create knowledge, piloted in the DOE chemical sciences community.

CMCS Team

bittner@mcs.anl.gov

Theresa Windus Jim Myers Karen Schuchard Eric Stephan <u>awrence Livermore National Laboratory</u>

National Institute of Standards and Technolog

Goals

- Develop an informatics infrastructure enabling dynamic addition of new workflows, schemas, scientific applications
 - > Portal enabling data-centric project- and community-level collaboration
 - Middleware and tools for security, notification, collaboration
 - Metadata-based data management technologies
 - Development environment for an evolving set of collaborative cross-scale science tools
- Pilot informatics infrastructure within chemical science community, producing a new paradigm for distributed chemical science research
 - Chemical science tools that generate, use and archive metadata
 - Develop collaborative data pedigree/annotation tools
 - Programmatic use of pedigree/annotation to provide cross-scale optimization and consistency checking

Challenges

- Multi-scale chemical science information flow is complex.
- Facilitating collaboration and information transfer simultaneously across geography, scales, and disciplines (including computer and information sciences) is difficult.
- Making research meta-data and tools webaccessible invokes difficulties.
 - Changes in behavior and assumptions of scientists.
 - Requires friendly, secure, easily deployed and maintained infrastructure.
 - May well invoke new problems in scientific community (pedigree/peer review/publication) and in industry/public.
- Obtaining sufficient buy-in from users, institutions, and sponsors to maintain and evolve a production collaboratory infrastructure.

Scientific Applications

- Molecular Simulation
 - Molecular Science Software Suite, MS3
 - NWChem/Ecce
- Active Thermochemical Tables
- Databases and XML-based Data Standards at NIST
- GRI-Mech
- Feature Tracking & Detection
- Applications at the continuum scales
 - Chemkin
- Flamemaster
- > HCT
- Reaction Mechanisms & Chemical Kinetics Models
- Reaction Rates

CMCS Architecture

Architecture diagram for CMCS showing portal integration of domain applications and data resources from across the multi-scale community.

CMCS Portal Portal Engine Security/Access Control Community Data Exchange Schema Management

Prototype design of portal for multi-scale chemical science.

Interactions With Other Projects

With CMCS Users/Customers

- Chemical science users and customers
 - Chemical scientists in DOE programs, laboratories
 - Research community, especially by enabling new projects
 - Chemical standards institutions and chemical applications industries
- Computer, information & physical scientists
 - Piloting metadata/pedigree concepts of SAM project
 - Informatics infrastructure for other multi-scale science

DOE and other program managers

- DOE/MICS NC program
- DOE/BES chemical science program
- Others enabled in the future; AFOSR, DOE/OIT, DOE/FE, ...

With Other Projects

- Current & potential NC & SciDAC projects
- Scientific Annotation Middleware (SAM)
- DOE Science Grid
- COG kits
- Middleware technology to support science
- Scientific data management ISIC
- ➤ BES SciDAC computational projects

➤Other projects

- OpenChem workbench Tom McKinnon (Colorado School of Mines)
- Bio/Spice Adam Arkin (LBNL, UCB)
- Science of Collaboratories Gary Olson (University of Michigan)
- Thermochemical models and databases Mark Allendorf (SNL/CRF)

Infrastructure Technology

Data/metadata management

>Information sharing between people and applications across chemical scales. Incorporate third party applications and data stores. Dynamically evolve and extend schema.

Notification

Notifivation of changes within CMCS without requiring user monitoring. Support both human and software centric types of 'workflow.'

Pedigree

Adopt semantic standards. Consider pedigree to be a type of relationship.

Portal/personalization

Mechanism to reduce information overload, provide filtering. Project context allows user to build/select from different sets of preferences.

Search

Lower barriers to finding information that exists. Simplify adding new types of information.

Security

Protect underlying resources, users' intellectual property. Assure accessibility, integrity, and persistence of data.

